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Abstract--The energetics and dynamics of n-heptane droplets evaporating in their own 800 K vapour at 
1 and 10 bar have been studied using a finite-volume-based numerical method at intermediate Reynolds 
numbers. Droplet mass, Reynolds number, liquid heating rate, Nusselt number and drag coefficient 
histories have been obtained. The results show that liquid-phase heating plays an important role in overall 
droplet behaviour, particularly at elevated pressures. A simple liquid heating model is also presented which 
accounts for internal circulation through the use of an effective thermal conductivity. This enhanced 
diffusion model, together with a set of heat transfer and drag correlations, is shown to predict droplet 
behaviour in good agreement with the detailed numerical results. 

1. I N T R O D U C T I O N  

Liquid sprays are extensively used in a variety of devices ranging from simple fire sprinklers to 
complex propulsion systems. This has naturally led to much interest in the study of droplet 
evaporation and combustion processes. In a comprehensive review paper on spray evaporation and 
combustion, Faeth (1983) identified a number of separated flow models which are capable of 
predicting the behaviour of practical sprays. Due to computational limitations, such models make 
no attempt to calculate the details of the flow around individual droplets, but rather employ a 
Lagrangian formulation to track the motion of the droplets in the spray field which requires 
correlations for droplet drag and, heat and mass transfer. Clearly, a complete understanding of 
droplet energetics and dynamics is fundamental to this important class of spray modelling and to 
the understanding of liquid sprays in general. 

Droplet processes that take place in a typical spray environment are diverse and complex to 
model. Following the primary atomization of the liquid jet and the subsequent break-up of larger 
droplets, a spectrum of drop sizes and velocities is established. Droplet trajectories depend on the 
injector type and system characteristics. However, in general, smaller droplets with diameters less 
than about 20 #m which possess little inertia readily conform to the local flow structure. For these 
droplets, the associated Reynolds numbers are close to zero over most of their lifetimes, and 
comprehensive literature reviews by Williams (1973), Faeth (1977, 1983), Law (1983) and Sirignano 
(1983) suggest that the behaviour of such droplets is reasonably well-understood within the 
framework of the classical spherically-symmetric analyses pioneered by Godsave (1953) and 
Spalding (1953). On the other hand, larger droplets with typical diameters of the order of 70-80/z m 
possess sufficient inertia to penetrate deep into the spray region with essentially straight trajectories. 
For these larger droplets, convective transport processes remain dominant throughout the droplet 
lifetime which is typically spent in the so-called intermediate Reynolds number range (from about 
5 to 500), where neither the creeping-flow nor the boundary-layer type of analyses may rigorously 
be applied. It is the behaviour of such large droplets that the present work is concerned with. 

The evaporation process itself brings about two major changes in the flow field around a sphere. 
Firstly, the composition of the gas phase is modified--which in most cases results in very significant 
changes in the thermophysical properties, and therefore, in the associated heat, mass and 
momentum transfer rates. Secondly, the evaporation process produces an effect similar to 
non-uniform blowing at the surface---which retards heat transfer to the droplet, reduces friction 
drag and increases pressure drag. The problem is further complicated by liquid-phase heating and 
motion. 
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2. LITERATURE REVIEW 

Readers interested in the low Reynolds number behaviour of evaporating droplets will find the 
papers by Taylor & Acrivos (1964), Fendell et al. (1966), Gal-Or & Yaron (1973), Montlucon 
(1975), Sadhal & Ayyaswamy (1983) and Gogos et al. (1986) extremely useful. The present work 
is concerned with the behaviour of larger droplets, and therefore, the literature review here will 
be confined to studies carried out in the intermediate Reynolds number range. 

The inherently transient, convective, two-phase and multicomponent nature of the droplet 
evaporation process has rendered its quantitative analysis quite difficult, even under idealized 
conditions. Prakash & Sirignano (1980) used an integral boundary-layer formulation together with 
the assumption of a quasi-steady gas phase. Their analysis included limited variable property 
effects, and processes due to liquid-phase circulation and transient heating. The results showed that 
liquid heating persists throughout the droplet lifetime and therefore plays an important role in the 
overall evaporation process. The model was later extended to the analysis of multicomponent 
droplet evaporation by Lara-Urbaneja & Sirignano (1981). Although this approach captures much 
of the relevant physics, it is not entirely satisfactory for several reasons. Firstly, at the Reynolds 
numbers of interest (Re ___ 100), the boundary-layer assumptions are not very satisfactory and 
obviously, completely break down beyond the point of flow separation. Secondly, the imposition 
of the potential flow pressure distribution on the boundary layer makes the all important 
determination of the droplet drag coefficient impossible. Finally, the strongly coupled and highly 
non-linear nature of the governing equations make recourse to numerical methods inevitable and 
therefore, the benefits of such a semi-analytical approach over a completely numerical one are 
questionable. 

Using the stream-function/vorticity formulation and a non-orthogonal adaptive grid to track the 
shrinking droplet, Dwyer & Sanders (1984a, b) numerically solved the transient transport equations 
for both the liquid and gas phases. Unfortunately, in these studies the effects of variable 
thermophysical properties were ignored. Considering the fact that very large temperature and 
concentration gradients typically exist in the transfer paths, the assumption of constant properties 
is a major limitation which makes the interpretation of the results difficult and somewhat 
ambiguous. 

Renksizbulut & Yuen (1983a) also used numerical methods to analyse the behaviour of 
evaporating droplets in high-temperature convective surroundings. Although the evaporation 
process was treated as quasi-steady, and the effects of liquid motion and heating were ignored, all 
effects due to variable thermophysical properties were considered. This study, concurrently carried 
out with an experimental investigation (Renksizbulut & Yuen 1983b) of droplet evaporation in air 
streams up to 1059 K, resulted in the following correlations: 

--droplet drag (10 < Re m < 300), 

CD(1 + Bt) °2 = 24 Rein I + 4.8 Rein°37; 

--heat  transfer (10 < Rem < 2000), 

Nuf(1 + n f )  0"7 = 2 + 0.57 Relm/2 Pr~/3; 

[1] 

[2] 

where CD is the drag coefficient, and Re, Pr, Nu and B are the Reynolds, Prandtl, Nusselt and 
transfer numbers, respectively. Complete definitions of all dimensional and non-dimensional 
variables are given in the nomenclature section. In both equations, all thermophysical properties 
are evaluated using the film conditions (arithmetic average molar concentration and temperature), 
except for density in Rein which is based on the free-stream value. The r.h.s.s of [1] and [2] are 
recognizable as standard forms for flow over solid spheres at intermediate Reynolds numbers. The 
terms (1 + Bf) °'2 and (1 + Br) °'7 account for the reductions in total drag and heat transfer due to 
the blowing effect of evaporation, as characterized by the transfer (or Spalding) number B. 
Renksizbulut & Yuen (1983a, b) have demonstrated that these correlations predict well the 
experimental and numerical data of other researchers using different fluids as well as data on solid 
spheres (B = 0). 
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Recently, Haywood & Renksizbulut (1986) carried out a more detailed numerical study in order 
to examine the predictive capabilities of [1] and [2]. The life history of an n-heptane droplet 
introduced to an environment of its own vapour at 1 bar, 800 K, with an initial Reynolds number 
of 100 was studied. All effects due to variable properties, liquid-phase motion and heating, and 
transient variations in droplet size and velocity were included in the analysis. The choice of an all 
heptane gas phase ensured a very accurate assessment of the effects of variable properties by 
removing the inherent uncertainties associated with the prediction of multicomponent gas 
properties. The results showed, as expected, that liquid-phase heating plays an important role, and 
that [1] and [2] will predict the droplet drag and heat transfer rates accurately only when 
liquid-phase heating is accounted for through the use of an effective latent heat of vaporization 
L'  in the calculation of the transfer number. L'  is simply defined from the surface energy balance: 

Q~ = rh*L* + QL* --- rn*L*', [3] 

where rh is the rate of evaporation and * designates a dimensional variable. Clearly, a practical 
model is needed for the prediction of heat transfer to the liquid phase, Q*, if these correlations 
are to be of value in spray modelling studies. This constitutes one of the major objectives of the 
present work. 

3. PROBLEM STATEMENT AND ASSUMPTIONS 

Life histories of n-heptane droplets evaporating in superheated n-heptane streams at 800 K at 
1 and 10 bar, are traced. The initial Reynolds numbers have been selected as 100 and 250 for the 
1 and 10 bar cases, respectively. In both cases, the liquid-phase temperature is initially 298 K, which 
is well below the boiling point temperatures of 372 K at 1 bar and 478 K at 10 bar. 

It is assumed that the droplet maintains a perfectly spherical shape at all times, the flow field 
is laminar and axisymmetric, and all effects due to gravity, viscous dissipation and thermal 
radiation are negligible. It is further assumed that thermodynamic equilibrium exists at the 
gas-liquid interface and therefore, the droplet surface is at the boiling point at all times. The flow 
conditions existing inside and outside the droplet at the time of formation cannot be described with 
any degree of certainty. In view of this, the initial flow field has been arbitrarily prescribed as 
isothermal viscous flow over a motionless liquid sphere at the specified initial Reynolds number. 

4. THE FULLY NUMERICAL MODEL 

Based on the non-dimensionalization given in the nomenclature section, the transport equations 
expressing the conservation of mass, momentum and energy can be cast into the following unified 
format: 

_ { [ (  r dR) ]} V 
O ( p V R ~ ) + V 2 V "  p~  lQr V - ~  eJ[-~)°O = l  v ' ( r * v ( ~ ) ' J f - S * "  [4] 
Ot 

Where: 

for the continuity equation, • = 1, Fc = 0 and 

dV dR 
V - - "  Sc = pR - ~  - 2p dt ' [5] 

for the radial momentum, • = v,, FRM = 2/~/Re0 and 

2V [V. /zVvr - (V. t ) , ] -  2pVv, dR Op. 
aRM---- V 2 [ V ' ( p V V r ) -  V ' ( p W ) r ] -  Reo----R d--t- dr '  

for the tangential momentum equation ~ = vo, FTM = 2#/Reo and 

2V dR 1 dp. 
STM ~-~ V 2 [V- (p  Yv O) --  V" (p  VV)o ] - -  - -  [V" ]A V v  0 --  (V" "g)o] --  2p Vvo 

ReoR dt r 00' 

[6] 

[7] 
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finally, for the energy equation, (P = T, FE = 2k/(cpReoPr~) and 

= dV dR 2V k2 (VT.Vcp). [8] 
SE p TR ~ -- 2p TV --~ + Re0Proo R Cp 

These equations were solved subject to the following set of boundary conditions in the solution 
domain shown in figure 1. 

(a) At the droplet surface, r = 1: 

Ts = r~t, [9] 

"CrO, G --~" "CrO,L, UO, G = CO, L, [10] 

1 ( rh~+dR '~ ,  
V,.L = "~ \ PL dt J [11] 

1 /rh~ dR'~ 
V,.G=-~ ~--p~G +--~) ,  [12] 

~ r  L 3T I +½ReoPr~Rmb'L;  [13] - k  OT = - k  ~r G 

i 

where the stress component r~o is given by 

%o = #r ~rr -~ r 00 " [141 

(b) Far from the droplet, r = 40 and 0 ~< 0 ~< n/2: 

v,= -cosO, vo=sinO, T = I .  [15] 

(c) Far from the droplet, r = 40 and n/2 < 0 <~ n: 

c~ 0, where ~ = vr, vo, T. [16] 
dr 

(d) Along the axis of symmetry, vo = 0 and: 

t3~ 0, where~ vr, T. [17] 
60 

Equation [16] presents an adequate solution to the well-known problem of specifying downstream 
boundary conditions at a finite distance from an object in computational fluid mechanics and heat 
transfer. 

Overall conservation of mass and momentum provides the expressions necessary to close the 
equation set: 

dR 1 / "  R dil L 
d-t- = 2fie Jo  rh~' sin 0 dO 3fie dt [18] 

and 

dV 3CDV 2 
d--t- = 8/~LR " [191 

The total drag coefficient CD is the sum of the friction drag Cv, pressure drag Cp and the thrust 
CT coefficients which are calculated at the droplet surface, based on the instantaneous gas flow field 
using 

C F = ( R V ~ o )  f~ (Z~osinO--z,,cosO) sinOdO, 

Cv=f~(~-~2)sin2OdO 

[20] 

[21] 
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Figure !. The numerical solution domain and grid layout. 

and 

f; ;: CT = 2pv~ sin 20 dO - 4pv, vo sin 2 0 dO, [22] 

where the stress component z,, is given by 

Or, 2 
z .  = 2/~ &-r - 3 # V .v .  [23] 

In order to solve the above set of non-linear and strongly coupled equations, a conservative 
finite-volume-based numerical technique was used. The governing differential equations were 
integrated over discrete volumes, sketched in figure 1, resulting in a set of algebraic equations of 
the generalized form 

Ap~p = AN@ N + As@ s + A E ~  E + Awq~w + Bp, [24] 

which were solved iteratively using the ADI (alternating direction implicit) technique. The lengthy 
derivation which leads to [24] and the coefficient functions Ap, AN, As, AE, Aw and By are given 
by Haywood (1986). In working numerically with the so-called primitive variables (v,, vo, p), the 
absence of an explicit equation for pressure presents a problem. In the present work, this difficulty 
was overcome by using the SIMPLEC approach (Patankar 1980; Vandoormaal & Raithby 1984), 
in which an expression in the form of [24] was derived for pressure by a combination of the 
continuity and momentum equations. The basic strategy is to develop a pressure field such that 
the resulting velocity field satisfies the continuity equation for every control volume in the 
calculation domain. Further details of the entire numerical procedure and the verification of the 
computer code through benchmark problems are given by Haywood (1986). 

5. RESULTS OF THE FULLY NUMERICAL MODEL 

As indicated in section 3, two cases were studied. The first case which involved the evaporation 
of an n-beptane droplet at l bar has been discussed in detail previously (Haywood & Renksizbulut 
1986) and will not be repeated here. However, some of the results have been reproduced in figures 
2-4 in order to point out some of the earlier observations and to provide a comparison basis for 
the second case involving droplet evaporation at l0 bar. 

Figure 2 shows that over 80% of the droplet lifetime is spent at Re > 10, and that liquid-phase 
heating persists for a period covering about one-third of the droplet lifetime. The effect of liquid 
heating on overall droplet behaviour is apparent in figures 3 and 4, where the average Nusselt 
number is calculated based on the instantaneous gas-phase temperature field using 

, 
Nuo0 = (l - T~--------) k ~-r , sin 0 dO. [25] 
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Figure  2. L i q u i d  heat ing  f ract ion ,  d rop le t  mass and  
R e y n o l d s  n u m b e r  histories at 1 bar;  Re  0 = 100. 
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Figure 3. Nusselt number history at 1 bar 
( R e  0 = 100): O ,  fully numerical solution; . . . .  , [2]; 

- - ,  [2] w i t h  B '  as defined by [26]. 

It is seen that the unmodified Renksizbulut-Yuen correlations as given by [1] and [2] can be used 
in a quasi-steady manner to obtain excellent predictions, but only beyond the period of appreciable 
liquid heating. This is not surprising because, in general, gas-phase heat and momentum diffusion 
rates (as characterized by ~G and vc) at atmospheric pressure are 2-3 orders of magnitude larger 
than typical droplet surface regression rates (as characterized by dR2/dt), whereas even with 
internal circulation, transport rates in the liquid phase are comparable in magnitude to dR2/dt. 
Clearly, a quasi-steady treatment is readily justifiable in the absence of significant liquid heating. 
However, as shown in figures 3 and 4, transient effects due to liquid heating can still be handled 
in a quasi-steady manner provided that the correlations are modified by using an effective latent 
heat of vaporization L' (defined by [3]) in the transfer number definition, such that 

B~ = ( T *  - T * ) c * G . r / L  *' [26] 

In the l0 bar case, the initial Reynolds number was chosen to be Re0 = 250 corresponding, for 
example, to a 50 #m dia droplet with an initial relative velocity of about 5 m/s. In view of the higher 
gas density and droplet surface temperature (lower surface tension), such a droplet may be initially 
somewhat deformed. Droplets are nearly spherical when We <~ l0 (Williams 1985). For the example 
given above, the initial We < 5 (which corresponds to the worst conditions), indicating that the 
assumption of a spherical droplet is still a realistic one. 

The droplet mass, liquid heating fraction and Reynolds number histories for the l0 bar case are 
shown in figure 5. As expected, at this pressure level the droplet lifetime is found to be much 
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Figure 4. Total drag coefficient history at 1 bar 
(Reo = 100): O ,  fully numerical solution; . . . .  , [1]; 

- - ,  [1] w i t h  B" as defined by [261. 
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Figure 5. Liquid heating fraction, droplet mass and 
Reynolds number histories at 10 bar; Re 0 = 250. 
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Figure 6. The flow field early in the droplet lifetime during the condensation period; p = 10 bar, 
Re, = 243, t = 10. 

shorter, predominantly due to the 10-fold increase in the gas-phase density, resulting in enhanced 
convective transport. Similarly to the 1 bar case, about 80% of the droplet lifetime is spent 
at Re > 0.1 Re0. The initial increase in droplet mass that is observed in this figure and also in 
figure 2, is due to vapour condensation on the subcooled droplet. With a prescribed initial 
subcooling of  Ts - To = 180 K compared to 74 K in the low-pressure case, the condensation period 
is now substantially longer as a fraction of the droplet lifetime. 

Figure 5 also shows that at l0 bar liquid-phase heating persists for almost the entire droplet 
lifetime. There are a number of competing effects brought about by increased pressure which alter 
the duration and intensity of liquid-phase heating, thereby influencing overall droplet behaviour. 
At elevated pressures, increased gas density and reduced liquid viscosity (due to higher droplet 
temperatures) both act to intensify liquid-phase motion. The complexity of the resulting flow fields 
is self-evident in figures 6 and 7. Figure 6 shows the existence of even a secondary recirculation 
zone in the liquid phase driven by the strong flow reversal of the gas-phase trailing vortex. 
However, this secondary recirculation zone dies out very quickly and has a negligible effect on heat 
transfer. 

Present numerical results show the maximum tangential velocity at the droplet surface attaining 
24% of the corresponding gas-phase free-stream velocity, v~, early in the droplet lifetime and then 
decaying to 0.10v~ towards the end, both of which are much larger than 0.09voo and 0.03v~, 
respectively, encountered in the low-pressure case (Haywood & Renksizbulut 1986). Intensified 
internal circulation alone would lead one to believe that liquid-phase heating time should be 
shorter. However, at elevated pressures, three other effects compete with this. Firstly, the saturation 

MF. 14/2--E 

Figure 7. The flow field during the evaporation period; p = 10 bar, Re~ = 76, t = 261. 
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Figure 8. Nusselt number history at 10 bar 
(Re0 = 250): ©, fully numerical solution; . . . .  , [2]; 

- - ,  [2] with B' as defined by [26]. 

Figure 9. Total drag coefficient history at 10 bar 
(Re 0 = 250): ©, fully numerical solution; . . . .  , [1]; 

, [1] with B' as defined by [26]. 

temperature is higher which normally results in a higher degree of initial liquid subcooling. 
Secondly, because of higher droplet temperatures, liquid thermal conductivity is substantially 
reduced. For example, kL at 478 K (Ts at 10 bar) is less than 65% of its value at 371 K (T s at 1 bar). 
Thirdly, at elevated pressures, the surface regression rate is higher. Consider the limiting situation 
where the surface regresses as fast as the thermal wave propagates in the liquid phase. This would 
result in a time-invariant interface temperature gradient and therefore, liquid heating would persist 
for the entire droplet lifetime. Hence, these three effects override the thermal benefits of enhanced 
internal circulation and prolong liquid heating times at elevated pressures. 

Figures 8 and 9 show the computed Nusselt number and drag histories as well as the predicted 
values using the Renksizbulut-Yuen correlations in a quasi-steady manner with and without 
correction for liquid heating. Compared to the low-pressure case (see figures 3 and 4) the agreement 
is not as good because of increased liquid surface mobility and the deterioration of gas-phase 
quasi-steadiness with increasing pressure. The former follows from the fact that the r.h.s.s of [1] 
and [2] represent solid sphere-like conditions, and therefore, both correlations fail to some extent 
when there is a great deal of liquid-phase motion present. The latter is apparent, for example, from 
the ratio of the gas-phase thermal diffusion rate to the surface regression rate: 

~ (ReoPLo R dR'~- '  = dt ] " [27] 

dt* 

With Re0 - 100, Pr~ - 1, R - 1 and dR~dr ~ -  10 -3, this ratio is only of order 10, which is clearly 
quite marginal for a quasi-steady treatment. Nevertheless, the predictive capabilities of the 
correlations are quite remarkable in view of the complexity of the problem. 

6. THE SEMI-ANALYTICAL MODEL 

Although the complete numerical model provides detailed information on the flow field and the 
transport processes taking place during droplet evaporation, its complexity and cost renders it 
rather useless for spray modelling. Motivated by this, a much simpler semi-analytical model was 
formulated. The overall conservation of mass, momentum and energy can be expressed in the form: 

dm * 
- -  - m * ,  [ 2 8 ]  
dt* 

m* dV*- ~v~ nR Co [29] dt* _½p,  ,2 ,2 



T R A N S I E N T  D R O P L E T  EVAPORATION 197 

and 

rh*L *" = Q* = 4nR*Eh*(T * - T*), [30] 

where m * =  (4/3)nR*3p *, h* is the heat transfer coefficient and L*' is defined by [3] as 

L* L*'=( o. l t31] 
1 - a ~ ]  

Hence, if a simple method for calculating the liquid-phase heating rate Q* (or Q*/Q~) can be 
found, then with appropriate heat transfer and drag correlations, and a given set of initial 
conditions, these equations can be easily solved using basic numerical integration techniques. 

The present liquid heating model is basically an enhanced diffusion model. The starting point 
is the well-known analytical solution for transient, one-dimensional conduction inside a sphere with 
prescribed initial and surface temperatures (Carslaw & Jager 1959) which yields the following 
expression for the temperature gradient at the surface of the sphere: 

( - flrcEk* t*~ F r*l exp [32] 
Lar*_l, j = ]  Y L  L" p,L ~"  / 

The liquid heating fraction is then calculated from 

. / ~ T * \  
Q--~= kL~r*)' [33] 
Q* h * ( T * -  T*)" 

Clearly, [32] is not readily applicable to the case of an evaporating droplet with surface regression 
and internal circulation. The effects of surface regression can be modelled by using a form of 
time-averaged R* in [32] while the increase in heat transfer due to internal circulation can be 
modelled by introducing an enhanced liquid thermal conductivity of the form 

kL*'= k*(1 + fl Rel/2pr[/3), [34] 

where fl is a constant and the familiar last term accounts for the convective contribution. Since 
the intensity of internal circulation depends on the external flow, the continuity of tangential shear 
stress at the droplet surface can be used to relate ReL to Re~: 

* * 
lAG I) oo 

~--~- ~ ~. [35] 

It is well-known from laminar boundary-layer theory that 

R* 
6 * ~ Rel/----- 5. [36] 

Hence, using [35] and [36], ReL is related to Reo~ as 

Re[/2 ~ Re~: \~--~,/ \~--~,] . [371 

In the model, [37] is treated as a formal equality, and the departure from this is absorbed by ft. 
Finally, the complete set of equations in non-dimensional form are 

m00 = 3NuooB~R [381 
dt Re0 Pr= PL,0 

and 

dV 3CDR 2 V 2 

8 L0( 0) [391 
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where 

and 

. =F(m3(oL°3F, 
kkm0/ \  Pt 11._] 

QL 4Rk[(Ts- To) 1 f _2rr2j2 f~. t x 
Q----~= ~u--~u -~-S ~) :=,~ ~ exp~,ReoPr®~EpLCp.L)' 

Nu~ = kr(1 + B~) -°7 (2 + 0.57 Re~2pr~/3), 

Co = (1 + B~) -°~ (24 Re~ j + 4.8 Re2~°37), 

' E (PL~'/3 Re~2] k L = k L 1 3 L 0.056 Pr[/3 #~/2 \--~L,] 

[40] 

[41] 

[42] 

[43] 

[44] 

[45] 

Reo~ =//fRem = VR Re0. [46] 

Here, [28] and [30] were combined to yield [38], and [39] is the non-dimensional form of [29]. 
Equations [43] and [44] are the previously given Renksizbulut-Yuen correlations, and [34] and [37] 
were combined to obtain [45] where fl = 0.056 has been used, the reason for which will be given 
in the next section. Equation [42] follows from [32] and [33] where the time averaging is over the 
last n time steps, i.e. 

1 1 ~ 1  1 1 ~  1 1 ~  
. . . .  --fi-5, ~'~= /~,i. [47] 

R F/i=1 R i '  ~-~ - n i= l  Ri  -n ,= 

The initial conditions are simply m/mo = 1 and V = 1. 
Because of the strong coupling between these equations, an iterative procedure is required at each 

time step in order to arrive at the correct QL/Q~ ratio. The solution algorithm is as follows: 

1. Start a new time step by guessing QL/QG. 
2. Calculate B'  and then Nu~ and CD. 
3. Calculate m/mo, V and R at the new time step from [38]-[40]. 
4. Calculate QL/QG from [42]. 
5. Return to step 2 if QL/QG has changed by more than a prescribed percentage 

(such as 0.1%). Otherwise, move on to the next time plane by returning to step 1. 

7. RESULTS OF THE SEMI-ANALYTICAL MODEL 

The predictive capability of the semi-analytical model was evaluated using the results obtained 
from the fully numerical analysis presented before. In the model calculations, all liquid thermo- 
physical properties were evaluated at the arithmetic mean temperature based on the initial and 
saturation temperatures. At this mean temperature Pr L = 6.01, ReL = 1.266 Re~ and PrL = 5.31, 
Re L = 0.437 Reo~ for the low- and high-pressure cases, respectively. Thus, the liquid-phase Prclet 
numbers (RePr) varied from about 760 to 50 during the droplet lifetimes. 

Shown in figures 10-12 are the mass, liquid heating, Reynolds number, drag coefficient and 
Nusselt number histories for the low-pressure case. The observed agreement is remarkable in view 
of the overwhelming simplicity of the model as compared to the fully numerical scheme. It should 
be noted that 13 = 0.056 appearing in [45] for k~. was obtained using the low-pressure numerical 
data on QL/QG as reference. However, with this final calibration, [45] should be applicable to other 
cases like any other correlation. 

The predictions of the simple model for the high-pressure case are shown in figures 13-16. 
Although the agreement now is not as good as the low-pressure case, the results are still within 
20% of the fully numerical predictions on droplet mass, Reynolds number, drag coefficient and 
Nusselt number. This reduction in predictive capability with increasing pressure is primarily due 
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Figure 10. Compar ison  o f  the model  predict ions 
( - - )  wi th  the numerical  solutions ( A ,  17, © )  at 

1 bar; Re 0 = 100. 
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Figure 11. Comparison of  the model predictions 
( ) with the numerical solution (C)) for the 

Nusselt number history at 1 bar; Re 0 = 100. 
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Figure 12. Comparison of  the model predictions 
( -)  with the numerical solution ( © )  for the drag 

coefficient at 1 bar; Re0 = 100. 
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Figure 13. Comparison of  the model predictions 
( ) with the numerical solutions ( A ,  © )  at 10 bar; 

Re0 = 250. 
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Figure 14. Comparison of  the model predictions 
( ) with the numerical solution ( © )  for the 

Reynolds number history at 10 bar; Re 0 = 250. 
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Figure 16. Comparison of the model predictions ( ) with the numerical solution (O) for the drag 
coetficient at 10 bar; Re 0 = 250. 

to increased surface mobility and stronger gas-phase transient effects which are difficult to model 
with existing Nusselt number and drag correlations in a quasi-steady manner, as discussed 
previously in section 5. 

Finally, it should be noted that a very similar procedure can be followed when the droplet is 
evaporating in a medium other than its own vapour  as more commonly encountered in practice• 
In such a case, a Sherwood number correlation is needed as an additional equation because the 
droplet surface temperature Ts is now an additional unknown. The iterative process then involves 
seeking the correct Ts as well as QL which would satisfy [3] at a given time. 

8. C O N C L U S I O N  

This research was motivated by spray modelling studies that require accurate correlations for 
droplet drag and heat transfer as fundamental inputs. As such, the principal conclusion of  the 
present work, based on a complete numerical study of transient convective evaporation of  
n-heptane droplets at 1 and 10 bar, is that the Renksizbulut-Yuen correlations together with an 
enhanced diffusion model for liquid-phase heating can be used in a quasi-steady manner to predict 
droplet behaviour quite accurately. However, more research is needed before this conclusion can 
be safely extended to the pressures well above lObar  encountered in some spray applications• 

Acknowledgements--This work is supported by an operating grant from the Natural Sciences and Engineering 
Research Council of Canada to M. Renksizbulut, and by a graduate student scholarship from the Ontario 
Government to R. Haywood. 

N O M E N C L A T U R E  

B = Transfer number, (T~ - T*) Cp, G/L 
Cp = Specific heat at constant pressure, Cp/cp~o 

vo~ ~R CD = Total drag coefficient, 2F*/p* *2 *2 
F * =  Total force acting on the droplet 
h* = Heat  transfer coefficient 

k = Thermal conductivity, k*/k* 
L = Latent heat of  vaporization, L /Cpo~ To~ 
• " Local mass flux, ,,,0 /v~o~.0 m0 = " ~ ' " * / ~ *  " ' *  

Nu = Nusselt number, 2R*h*/k* 
-- po~)/P ~Vo~,o p =Pressure ,  (p*  . . .2 

Pr = Prandtl number, #*c*/k* 
Q * =  Heat  transfer rate 

r = Radial coordinate, r*/R* 
R = Instantaneous droplet size, R*/R* 
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R~' = Initial droplet size 
Re = Reynolds number, 2R*p *v *//~ * 

Re0 = Initial Reynolds number, 2R0*p~v~.0/lt~* * * 
Rem = Reynolds number, 2R *p * v *//z* 

t Time, '*,,* /R* ~ ~oo,O/ 0 

T = Temperature, T*/T* 
v* = Instantaneous free-stream velocity 

vr = Radial velocity, v*/v* 
vo = Tangential velocity, vo/v * 
V = Instantaneous free-stream velocity, v~/v~,o 

We Weber number, , , ,2 = 2R po~v~o/tr* 

Greek symbols 
ct * = Thermal diffusivity, k*/p *c* 

6 = Boundary-layer thickness, 6*/R* 
0 = Tangential coordinate 
/~ = Viscosity,/~*/#* 

v * = Kinematic viscosity, I~*/P * 
p = Density, p*/p* oO 

tr* = Surface tension 
z~ = Shear stress 
T* = Normal stress 

Subscripts and superscripts 
f = Film condition 

G = Gas phase 
L = Liquid phase 
0 = Initial conditions 
s = At the droplet surface 

sat = Saturation conditions 
oo = Free-stream conditions 

• = Dimensional quantity 
^ 

= Unit vector 
- = Spatial average 
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